GMa3: A General Physical Model for Micro-Mobility Vehicles

Abstract— Modeling the dynamics of micro-mobility vehi-
cles (MMYV) is becoming increasingly important for train-
ing autonomous vehicle systems and building urban traffic
simulations. However, mainstream tools rely on variants of
the Kinematic Bicycle Model (KBM) [9], [16], [24], [28] or
mode-specific physics that miss tire slip, load transfer, and
rider/vehicle lean. To our knowledge, no unified, physics-based
model captures these dynamics across the full range of common
MMVs and wheel layouts. We propose the “Generalized Micro-
mobility Model” (GM3), a tire-level formulation based on the
tire brush representation [1]-[3]] that supports arbitrary wheel
configurations, including single/double track and multi-wheel
platforms. We introduce an interactive model-agnostic simula-
tion framework that decouples vehicle/layout specification from
dynamics to compare the GM3 with the KBM and other models,
consisting of fixed step RK4 integration, human-in-the-loop and
scripted control, real-time trajectory traces and logging for
analysis. We also empirically validate the GM3 on the Stanford
Drone Dataset’s deathCircle (roundabout) scene [8] for biker,
skater, and cart classes.

I. INTRODUCTION

Micro-mobility vehicles (MMVs) such as bicycles and
scooters are becoming increasingly central to today’s urban
traffic. In 2023, people took 133 million trips on shared
micro-mobility across the US and 24 million trips in Canada,
led by the rise of dockless and station-based shared sys-
tems [25]. Beyond bikes and e-scooters, adoption of other
forms of micro-mobility, including skateboards, and low-
speed vehicles (LSVs), are also on the rise [[15]], [27].

At the same time, accidents involving micro-mobility
and motor vehicles are a growing safety concern. Accord-
ing to the National Highway Traffic Safety Administration
(NHTSA), in 2023, an estimated 49,989 U.S pedal cyclists
were injured with 1,166 fatalities, 81% of which occurred in
urban areas [29]]. For powered micro-mobility specifically,
the U.S. Consumer Product Safety Commission (CPSC)
reported an estimated 448,600 emergency department (ED)
visits associated with e-bikes, e-scooters, and hoverboards
between 2017 and 2023, with motor-vehicle collisions cited
as the leading cause of fatalities. E-bike-related ED visits
alone increased tenfold over this period [[19]).

From a modeling perspective, the USDOT Intelligent
Transportation Systems, Joint Program Office found that
current Analysis, Modeling, and Simulation (AMS) tools
are largely vehicle-centric, with limited support for multi-
modal interactions and inadequate representation of pedes-
trians, bicylists, and other micro-mobility modes [20]. The
International Transport Forum (ITF) reported that, in Cali-
fornia, deployments of autonomous vehicles, 85% of manual
disengagements involving public-space users (AV-VRU inter-
actions) were caused by the vehicle’s incorrect perception of

user intent [21]. These gaps indicate that existing simulators
and traffic models are not suited to capture the complexity
of interactions between MMV and autonomous systems
well. As a result, this is limiting their use for training and
validating autonomous systems, as well as limiting the ability
to make MMVs autonomous too!

Furthermore, many state-of-the-art systems default to
some variant of the Kinematic Bicycle Model (KBM) [9],
[16], [24]], [28] due to its simplicity and low computational
cost, performing well under low-speed, low-curvature condi-
tions. However, the KBM yields unrealistic trajectories when
MMVs perform aggressive or high-curvature maneuvers,
such as sharp turns, hard braking, and rapid lane changes.
The model does not capture tire slip, load transfer, or rider
lean, and its single-track geometry is not generalizable to
other forms of micro-mobility with alternate wheel con-
figurations. These limitations, therefore, make the KBM
insufficient for simulating the full range of MMV behaviors
that autonomous systems must anticipate in mixed traffic.

In this work, we address these limitations by introducing
the “Generalized Micro-Mobility Model” (GM3), a unified,
physics-based model using the brush tire model that (1)
operates at the tire level, (2) supports arbitrary wheel layouts
(single/double track and multi-wheel platforms) and (3)
captures slip, load transfer, and rider/vehicle lean.

The primary motivation for this work is to train and
evaluate autonomous systems for design, prototyping, and
testing, where all types of micro-mobility agents move and
interact realistically. Recent efforts only address specific
micro-mobility modes such as a vehicle-e-scooter interac-
tion simulator for general intersection and lane-change risk
analysis [17], cyclist (CiL), pedestrian (PiL), and automated
vehicle (ViL) in-the-loop testbeds for studying vulnerable
road user interactions in a shared virtual space [23[], and
a validated bicycle simulator for reproducing realistic steer,
row, yall, and roll dynamics [22]. Additionally, city-scale
agent-based micro-mobility simulators tend to focus on high-
level path planning rather than tire-level dynamics [26] and
widely used simulators such as SUMO approximate MMV
dynamics as either ’slow vehicles” or “’fast pedestrians” [[18]].
Thus, to our knowledge, no unified, physics-based framework
exists that models tire-level dynamics across the full range
of micro-mobility vehicles.

The main contributions of this work are:

« A Generalized Micro-Mobility Model (GM3), a uni-
fied, physics-based model for simulating the dynamics
of various micro-mobility vehicles. This model operates
at the tire level, capturing friction, tire slip, load transfer,
and lean, and supports arbitrary wheel configurations.



e An interactive simulation framework that implements
the GM3. The framework enables plug-and-play speci-
fication of MMV dynamics models, vehicle geometries,
and parameters (e.g. vehicle, tire, lean) and provides
real-time control and trajectory visualization.

o An empirical evaluation of the GM3 against the KBM
baseline on real-world bicycle, skateboard, and cart
trajectories showing that, relative to a KBM base-
line data GM3 reduces Average Displacement Error
(ADE) across modes while achieving comparable dis-
crete Fréchet distance (DFD).

II. RELATED WORKS

Kinematic Bicycle Model (KBM) is a simple and com-
putationally inexpensive model that is accurate for low
speeds [4]]. However, it has considerable limitations in model-
ing high-speed dynamics and trajectories with high curvature.
[7] demonstrated that KBM only yielded consistent results
for lateral acceleration ay < 0.5ug. In an experiment that
aimed to improve KBM for higher lateral accelerations with
an additional state variable [10], the results show vehicle
heading error growing significantly with the curvature due
to under-steering in the simulation. This is because KBM
does not account for lean or rider dynamics. KBM is
also not generalizable to other MMVs with different wheel
configurations.

Using a Tire Model as a basis, vehicles with varying
numbers of wheels in different positions can be simulated by
applying the same tire model with adjusted parameters for
the tires’ physical properties and transforming the forces ob-
tained from the brush model into the vehicle body frame. [6]]
performed validation experiments of the brush model with a
Chrysler Voyager, and the trajectories from the experiments
closely matched the corresponding simulation results for low
speeds. In [11]], the brush model and a thermo-physical brush
model were validated on a Formula SAE vehicle in extreme
scenarios, such as high-speed lane changes. The qualitative
and quantitative results show agreement between both mod-
els and the experimental data, with an average fitting error of
6.19% for the basic brush model and 6.09% for the thermo-
physical model. The semi-empirical Magic Formula — widely
used for commercial purposes — was also evaluated against
the data and only provided a 0.46% improvement over the
brush model. These results demonstrate the viability of the
brush model for simulating vehicle dynamics at low and high
speeds.

Several implementations of the brush model and other
tire models have been designed for specific vehicles. Project
Chrono [12] provides a Vehicle class with templates for
subsystems, including suspension, steering, and braking, and
options for three different classes of tire models: rigid, semi-
empirical, and finite element. The user can define a vehicle
as a list of axles, each consisting of a set of tires with their
own parameters. While this library can handle various wheel
configurations, its purpose is to model complex military
vehicles and as such, it does not address rider dynamics,
and the computational overhead is excessive for MMVs.

There is no general model for MM Vs that allows the user to
customize the wheel layout similarly to Project Chrono, and
this paper intends to fill that gap.

III. PRELIMINARIES
A. Tire Brush Model

To develop a general model that can extend to any micro-
mobility vehicle with any wheel configuration, we start from
a basic tire model. A relatively compact physics-based tire
model is the brush model that represents the tire tread as
independent bristles, each of which deflects under slip and
friction forces [5]. These bristles simulate the elasticity of
the combination of carcass, belt, and actual tread elements
of the real tire.

The brush model is derived from calculating the deflec-
tion of each bristle and integrating over the contact patch
between the tire and the road surface, assuming a parabolic
pressure distribution for simplicity. Tables [I] and [[] include
the minimum parameters and variables required to calculate
slip forces for a single tire.

TABLE I: Physical Parameters in the tire brush model.

Symbol  Description Units
a Half contact length m
R Tire radius m
Y Camber angle rad
u Coefficient of friction -
cp Tread element stiffness per unit area  N/m?

TABLE II: Input Variables in the tire brush model.

Symbol  Description Units
F. Normal load N
Q Wheel angular velocity — rad/s
S Steering angle rad
r Vehicle yaw rate rad/s
[0 Slip angle rad

The brush model uses a 3D coordinate system with x
pointing forward along the tire’s trajectory (longitudinal),
y pointing right perpendicular to x, and z pointing up. For
simplicity, we assume the isotropic model where the tire and
road properties are the same in every direction (¢, = cpy =
cpy and U = u, = ) and we assume a flat road surface.
Then, we define the theoretical slip vector ¢ with practical
slip quantities Kk = fvv% and tano = 7‘% (where V, and
Vy are the linear longitudinal and lateral velocities and Vi,
and Vj, are the linear longitudinal and lateral velocities slip

velocities).
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We introduce spin ¢ which represents the turn slip that
occurs when a tire follows a curved path. For a tire with
camber angle 7, effective rolling radius R,, turning radius
Trurn» and reduction factor &y (close to 0 for small tires and
close to 1 for large tires), the turn slip is

1 sin(y)

¢ =- +(1—¢&) 2
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We simplify the equations by introducing a composite tire
parameter:
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The resulting longitudinal force F, lateral force F,, and
aligning moment M, are as follows.
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The values % and % represent the boundary between the adhe-

sion region (0 < %), where the bristles deform without sliding, and
the sliding region (o > %), where the tire has reached its maximum
available friction. Here, sgn is the sign function, o =
6* is the modified tire parameter for camber angle:
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Fig. 1: A tire modeled with physical parameters and brush
model forces and moments.

The brush model provides a physics-based approach to predicting
tire forces and a balance between computational efficiency and
accuracy for vehicle dynamics. Unlike simplified linear tire models
that assume constant cornering stiffness, the brush model captures
the nonlinear saturation behavior that occurs when tires approach
their friction limits — a critical phenomenon for vehicles that
frequently operate in aggressive maneuvering conditions or on
varied surface types.

The fundamental insight of the brush model is to represent the
tire contact patch as a collection of independent elastic bristles
that deflect under slip conditions. This naturally accounts for the
transition from elastic deformation at low slip angles to sliding
friction at high slip angles, without requiring empirical curve fitting
or extensive tire testing data that more complex models demand.

For MMVs, this approach offers three key advantages. First,
these vehicles often experience significant slip due to their
lightweight nature, small contact patches, and ability to perform
aggressive maneuvers. Second, the brush model’s relatively simple

parameter set makes it practical for real-time control applications
while still capturing essential nonlinear effects like force saturation
and the coupling between longitudinal and lateral forces. Finally,
the model’s physical basis allows for intuitive parameter tuning and
provides meaningful insights into how tire design choices (contact
patch geometry, tread stiffness) affect MMV dynamics.

IV. METHODOLOGY

In this section, we describe our approach for integrating the brush
model and other vehicle dynamics into our Generalized Micro-
Mobility Model (GM3). We also include specific dynamics in the
cases of single-track MMVs that can lean and skateboards, which
have an entirely different steering mechanism.

GM3 Update

GM3Params TireModel Control Assignment

m, Iz, If, I, L, W, R, J TireParams M

cp, a align_gain, X, Y, R, 1, cp, a, Rear Tires
Use Q
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TireState
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For Front Tires —— vx/R
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Fig. 2: The GM3 State gets updated with the following
steps: (1) load transfer and leaning angle to steer angle
conversion for platforms, (2) control assignment for each
tire, (3) individual tire processing with the brush model,
and (4) force integration and rider lean force application.

A. Vehicle Integration

When integrating a tire i at position (x;,y;) relative to the vehicle
center of gravity and steering angle §; into vehicle dynamics, we
can transform the vehicle body velocities into tire velocities.

v;{?e =0ob cos(§) + (vf”dy + rx;) sin(&;) 8)
Ve = —vbody sin(8;) + (VB + rx;) cos(8) ©)

After transforming the body velocities into tire velocities, we
use the brush model equations to calculate the forces and moments
acting on each tire in its frame. Then, for each tire i, the forces
in the tire coordinate system are transformed to the vehicle body
coordinate system:

body ; e -
Fxf Y = F{[“cos(8;) — Fj'sin(§) (10)
i = Fie sin(8) + Fyi cos(8) (1n

F;’I"’ and F‘”l’e are the longitudinal and lateral forces in tire i’s
coordinate system and F)f l.Ody,Ffi”dy
vehicle body coordinate system.

are transformed forces in the



The total forces and moments acting on a vehicle with n tires
are:

proral _ Z Fhody _ Z (it cos(&) — Fiiesin(8)) - (12)
=1
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Here, kgjigp is the aligning moment gain factor and M”’ ¢ is the
aligning moment from tire i in the tire coordinate system We
include kyjiq, to account for the tire’s self-aligning torque acting
to turn the wheel back to decrease the slip angle.
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Fig. 3: Bird’s eye view of tire and body forces and moments
for a two-wheeled MMV (bicycle or scooter).

B. Load Transfer

As an MMV accelerates or turns, load transfer occurs between
the tires, which must be accounted for to ensure we are passing in
the correct normal load F; to the brush model. Load is transferred
to the back wheels when accelerating and to the front wheels when
decelerating, maintaining moment equilibrium about the center of
gravity. In a double-track vehicle, load is also transferred between
the inside and outside wheels when turning.

For a general MMV, we first redistribute the load longitudinally,
then laterally. We start by calculating the static load for the front
and rear axles based on their distances to the center of gravity /r
and [, and the number of tires in the front ny and rear n,.

mgl,
F, = 15
z,front nfL (15)
1
F. nes (16)

z,rear =
nyL

We use [, for the front axle and !/ r for the rear axle because the
axle closer to the center should have more normal force to maintain
moment equilibrium.

We calculate the longitudinal load transfer 7j,,, and the lateral
load transfer using the longitudinal acceleration a, and the lateral
acceleration ay.

maxheg

Tiong = — (17)
mayh,
- yrheg 18
lat "% ( )

Here, hcg is the height of the vehicle’s center of gravity above the
ground, L is the wheelbase (distance between front and rear axles),
and W is the track width (distance between left and right wheels

on the same axle). Tj,,, represents load transferred from front
to rear (positive when accelerating forward), and 7;, represents
load transferred from right to left wheels (positive for rightward
acceleration). If there is only one axle, then 7j,,, = 0, and if there
is only one tire per axle, then 7j,, = 0. The formula to calculate the
final load for tire i is as follows.

Tion,
F.— front_;,i/g_Tluthn(yi) x>0
Z.'l - On,
F rear + Tong —Tiusgn(y;) %<0

C. Lean

For MMVs where the rider leans when turning (bicycles, scoot-
ers, skateboards, etc.), we must also model the change in position
of the rider’s center of gravity. We do so by rotating the rider’s
original center of gravity (Xriger.cgsYrider.cg>Pridercq) Dy lean angle
¢ about the x-axis and projecting that into the xy-plane during force
calculation.

The lateral position of the rider’s center of gravity when leaning
is

19)

Yrider,rot = Yrider,cg cos(¢) + hrider.,cg sin(¢) (20)
The centripetal force acting on the rider during turning is
Fcentripetal = Myider * Ay (21)

where m,4,, 1s the rider’s mass.
Then, the total roll moment about the x-axis contributed by the
rider is

Mx,rider = Yrider,rotMrider8 + Fcentripetalhrider,cg (22)
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Fig. 4: Diagram of rider center of gravity, roll moment, and
centripetal force during leaning (a) and visualization with 2-
wheel front-to-back layout (b).

D. Skateboard Truck Geometry

Skateboards are unique because they use two independent steer-
ing assemblies called “trucks” — one at each end of the board. Each
truck consists of wheels mounted on an axle that can rotate about
a kingpin bolt. The rider controls the vehicle’s heading entirely
through body lean, which causes the trucks to steer in opposite
directions.

The kingpin angle B is the angle between the kingpin bolt and
the vertical plane of the skateboard deck. When the rider leans,
this geometry causes the front and rear trucks to steer at equal but
opposite angles:

(23)
(24)

O = k¢ sinf3
6 = —k¢sinf



Fig. 5: Skateboard with front and rear steering angles.

In our simulation, the steering input is used as the lean input to
steer the trucks, and all skateboard wheels are driven with the same
wheel angular velocity Q.

E. Generalization to Diverse Vehicle Platforms

Our GM3 is widely applicable to model and simulate a di-
verse range of micro-mobility vehicles across arbitrary layouts.
Some common modes are shown in Fig. [f] including bicycle,
scooter, skateboard, cart/LSV, hoverboard, delta 3-wheeler, tadpole
3-wheeler, 5-wheeled circular platform, and drawn carriage.

E Interactive Simulation Framework

To evaluate the proposed GM3 and facilitate comparison with
the KBM baseline, we developed an interactive, model-agnostic
simulation framework. It is designed to be both a tool for validating
the dynamics of different micro-mobility modes and a visualization
environment for comparing trajectories produced by different mod-
els. Additionally, while this work primarily focuses on comparing
GM3 against KBM, the framework is designed to be extensible
so additional models can be introduced by adhering to the same
interface for control mappings, state, and visual updates.

The framework supports a range of micro-mobility layouts,
including single-track vehicles such as bicycles and scooters, side-
by-side two-wheel configurations such as hoverboards and segways,
three-wheel platforms delta (1F-2R) and tadpole (2F-1R) with front-
axle steering, four-wheel carts, and a skateboard configuration, as
shown in Fig. [f] Steering kinematics are rendered consistently for
each layout, with Ackermann steering used for multi-axle vehicles
and a skateboard mode that couples front and rear wheel yaw in
opposite directions to simulate truck geometry. The idea here is to
separate vehicle geometry and model dynamics so that the same
platform can be evaluated on multiple MMV models.

Control can be provided in two modes: (1) Interactive and (2)
Script. In interactive mode, the user can drive the MMV agent using
keyboard controls, with steering, speed, and braking intents mapped
to model-specific inputs. While steering is consistent across models,
longitudinal controls differ by model. KBM accepts acceleration
commands while GM3 accepts wheel-speed commands. Input rate
limits and saturation are applied for realism (e.g. maximum steer
angle, maximum steering rate). In script mode, users define vehicle
kind, model type, initial states, parameter values, and control
sequences. Scripted runs are intended for qualitative side-by-side
comparisons.

At runtime, the simulator advances dynamics with fixed-step
fourth-order Runge-Kutta (RK4) integration. At each time step,
inputs or controls are read (from keyboard or a script), transformed
into model-specific commands, and fed to the appropriate model to
update the state. The new state is then used to append time-aligned
state and control values to logs and update the visualization which,
beyond vehicle effects, extends an accumulating trajectory trace.
The trace can be cleared or reset to rerun maneuvers with different
configurations. Run histories can be exported to CSV with model-
specific fields for analysis.

V. EXPERIMENTS

In our experiments, we evaluate the accuracy and correctness
of GM3 in reproducing realistic, physically-ground micro-mobility
trajectories, as compared to the KBM.

A. Datasets

Experiments are conducted using the Stanford Drone Dataset
(SDD) [8]l, a large collection of aerial videos recorded over the
Stanford campus. Each video is accompanied by frame-level anno-
tations in the form of axis-aligned bounding boxes and categorical
labels for eight classes of road users, including pedestrians, cyclists,
skaters, carts, cars, and buses. For this work specifically, we focus
on the deathCircle (roundabout) scene since it contains diverse
micro-mobility interactions as bicyclists, skateboarders, and carts
navigate a shared space alongside pedestrians taking high curvature
routes. Image-plane trajectories are converted to metric world
coordinates using the scene’s pixel-to-meter scale factors [13]]. For
each annotation, we extract the bottom-midpoint of the bounding
box, then resample at the native 30 fps [14] to obtain a uniform
step size Ar ~0.03s.

B. Vehicle Instantiation

Vehicles, one per mode, are instantiated using representative,
publicly reported parameters (e.g., wheelbase, track width, tire
radius, mass) taken from widely available bicycle, skateboard,
and cart specifications on company websites. The bicycle MMV
agent uses a single track geometry with lean, the skater uses a
skateboard configuration with rider lean, and the cart uses a four-
wheel layout and no rider lean. All layouts use load transfer. To
prevent overfitting, parameters are fixed per mode and not tuned
per track.

C. Metrics

For each trajectory, we quantify model performance with two
measures: (1) Average Displacement Error (ADE) and (2) Discrete
Fréchet Distance (DFD). Average Displacement Error (ADE) is
computed as the mean Euclidean Distance between the estimated
model positions and the corresponding ground truth positions across
all time steps. ADE captures how well the simulated trajectory
remains aligned with the true path when both are driven by the same
underlying control sequence. To account for overall path similarity,
we also report the discrete Fréchet distance (DFD).

D. Results

Table [ summarizes ADE and DFD errors across all three
modes. GM3 reduces ADE relative to KBM across all modes
(Biker: -5.44%, Skater: -9.62%, Cart: -7.32%), which indicates
better step-by-step alignment. For DFD, GM3 improves on the
Skater (-6.49%) and Cart (-2.4%) modes, but is worse on Biker
(+11.56%). Qualitatively, GM3 reproduces better short-term re-
sponses to controls due to the tire-level formulation which aligns
with the ADE observations. Since Fréchet distance emphasizes
global path similarity, the larger lean angles of cyclists relative
to skaters and golf carts introduce lateral biases that accumulate
along the extracted bottom-midpoint trajectories, which can inflate
the distance. However, aggregated across all modes, GM3 per-
forms only around 1% worse than KBM with respect to DFD.
Furthermore, the campus setting primarily captures low-speed,
cooperative interactions on narrow walkways and roadways (even at
the roundabout), so hard braking, rapid lane changes, and sustained
high-speed, high-curvature turns tend to be rare. As a result, the
reported differences likely understate the advantage GM3 provides
in higher-speed scenarios with larger slip angles (e.g., bike lanes,
downhill stretches, large evasive maneuvers). Please refer to the
supplementary video for live side-by-side comparisons of GM3 vs.
KBM for different modes.



(a) Bicycle // 2-wheel Scooter

(d) Unicycle (e) Hoverboard
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Fig. 6: Micro-mobility vehicles that can be simulated by the proposed GM3, illustrating its ability to generalize across
arbitrary layouts. Common modes: (a) bicycle/2-wheel scooter, (b) skateboard, (c) cart/LSV. Less common: (d) unicycle,
(e) hoverboard, (f) delta 3-wheeler, (g) tadpole 3-wheeler. Novel types: (h) 5-wheeled circular platform, (i) drawn carriage.

|ADE (m) | DFD (m)

Mode GM3 KBM GM3 KBM
Biker (Fig[oa) 45109  47.564 66.108  59.257
Skater (Fig[gb) ~ 45.628  50.016 55.005  58.575
Cart (Figlod)~ 44270 47512 52263 53515

TABLE III: Mean Average Displacement Error (ADE) and
discrete Fréchet distance (DFD) in meters over all trajectories
for each mode from the Stanford Drone Dataset DeathCircle
scene [8]. GM3 yields lower ADE than KBM across all modes,
indicating a better step-by-step alignment. For DFD, GM3 improves
on Skater and Cart but falls behind KBM on Biker, reflecting larger
lean-induced lateral biases.

VI. CONCLUSION

This paper introduced the Generalized Micro-Mobility Model
(GM3), a tire-level formulation built using the brush-tire model
that unifies all types of micro-mobility, including common lay-
outs such as bicycles, scooters, carts, uncommon layouts such as
hoverboards and three-wheel platforms, as well as novel layouts.
This model captures properties like tire slip, load transfer, and
rider/vehicle lean which specialized models like Kinematic Bicycle
Model (KBM) miss. To facilitate comparison, we built a model-
agnostic simulation framework that decouples wheel layout from
dynamics, standardizes control mappings, and supports interactive
and scripted simulations. On the Stanford Drone Dataset, GM3
consistently reduced average displacement errors across bicycle,
skateboard, and cart modes, while achieving path-level similarity
on par with the KBM as measured by the discrete Frechet distance.
These observations highlight that grounding dynamics at the tire
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Fig. 7: Trajectory comparison on a Biker track from the
Stanford Drone Dataset DeathCircle scene. GM3 (dotted
orange) follows the ground truth path (gray) more closely

than the KBM (dashed blue), notably near the roundabout
turn and exit, which is a high curvature region.

level results in more realistic local trajectories without sacrificing
global path realism. Future work will extend the GM3 to be
differentiable for learning, control, and parameter identification,
collect instrumented data emphasizing lean and load transfer, study
how GM3 enhances interactions between road users, and how it can
be used to generate realistic data for autonomous vehicle training
and personalized design of autonomous MMVs.



(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

REFERENCES

J. Svendenius and B. Wittenmark, “Brush tire model
with increased flexibility,” in 2003 European Control
Conference (ECC), IEEE, 2003, pp. 1863-1868.

J. Deur, J. Asgari, and D. Hrovat, “A 3d brush-
type dynamic tire friction model,” Vehicle System
Dynamics, vol. 42, no. 3, pp. 133-173, 2004.

J. Svendenius and M. Gifvert, “A brush-model based
semi-empirical tire-model for combined slips,” SAE
Technical Paper, Tech. Rep., 2004.

J. D. Kooijman, A. L. Schwab, and J. P. Meijaard, “Ex-
perimental validation of a model of an uncontrolled
bicycle,” Multibody System Dynamics, vol. 19, no. 1,
pp- 115-132, 2008.

H. B. Pacejka, “Chapter 3 - theory of steady-state
slip force and moment generation,” in Tire and Ve-
hicle Dynamics (Third Edition), H. B. Pacejka, Ed.,
Third Edition, Oxford: Butterworth-Heinemann, 2012,
pp- 87-147, 1SBN: 978-0-08-097016-5. DOIL: https:
//doi.org/10.1016/B978-0-08-097016—
5.00003- 6. [Online]. Available: https://www.
sciencedirect . com/ science /article /
pii/B9780080970165000036.

B. Szabd, “Vehicle test based validation of a tire
brush model using an optical velocity sensor,” Period-
ica Polytechnica Transportation Engineering, vol. 40,
no. 1, pp. 33-38, 2012.

P. Polack, F. Altché, B. d’Andréa-Novel, and A. de
La Fortelle, “The kinematic bicycle model: A con-
sistent model for planning feasible trajectories for au-
tonomous vehicles?” In 2017 IEEE Intelligent Vehicles
Symposium (IV), 2017, pp. 812-818. p01:|10.1109/
IVS.2017.7995816.

A. Robicquet, A. Sadeghian, A. Alahi, and S.
Savarese, “Learning social etiquette: Human trajectory
prediction in crowded scenes,” in European Confer-
ence on Computer Vision (ECCV), vol. 2, 2017, p. 5.
E. Leurent, An environment for autonomous driv-
ing decision-making, https : // github . com/
eleurent/highway-env, 2018.

J. A. Matute, M. Marcano, S. Diaz, and J. Perez,
“Experimental validation of a kinematic bicycle model
predictive control with lateral acceleration considera-
tion,” IFAC-PapersOnLine, vol. 52, no. 8, pp. 289-
294, 2019, 10th IFAC Symposium on Intelligent Au-
tonomous Vehicles IAV 2019, 1SSN: 2405-8963. DOI:

https://doi.org/10.1016/j.1ifacol.
2019 . 08 . 085. [Online]. Available: https :
/ / www . sciencedirect . com / science /

article/pii/S2405896319304185!

0. Ozerem and D. Morrey, “A brush-based thermo-
physical tyre model and its effectiveness in handling
simulation of a formula sae vehicle,” Proceedings
of the Institution of Mechanical Engineers, Part D:
Journal of Automobile Engineering, vol. 233, no. 1,
pp- 107-120, 2019.

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

R. Serban, M. Taylor, A. Tasora, and D. Ne-
grut, “Chrono::vehicle: Template-based ground vehi-
cle modelling and simulation,” International Journal
of Vehicle Performance, vol. 5, p. 18, Jan. 2019. DOI:
10.1504/1JVvP.2019.10018132.

J. Amirian, B. Zhang, F. V. Castro, J. J. Baldelo-
mar, J.-B. Hayet, and J. Pettre, “Opentraj: Assessing
prediction complexity in human trajectories datasets,”
in Asian Conference on Computer Vision (ACCV),
Springer, 2020.

J. Andle, N. Soucy, S. Socolow, and S. Y. Sekeh, “The
stanford drone dataset is more complex than we think:
An analysis of key characteristics,” IEEE Transactions
on Intelligent Vehicles, vol. 8, no. 2, pp. 1863—-1873,
2022.

K. Davis, “State of the outdoor market: August
2022, Outdoor Industry Association, Tech. Rep.,
Aug. 2022. [Online]. Available: https /7
outdoorindustry . org / wp — content /
uploads / 2015 / 03 / State — of - the -
Outdoor—-Market—-August—-2022.pdfl
Autoware Foundation, Mpc lateral controller (auto-
ware universe documentation), 2023.

Z. He and L. Li, “Simulation framework for vehicle
and electric scooter interaction,” in 2023 IEEE 26th
International Conference on Intelligent Transportation
Systems (ITSC), 2023, pp. 4479-4484. por: 10 .
1109/ITSC57777.2023.10422084.

A. Roosta, H. Kaths, M. Barthauer, J. Erdmann, Y.-P.
Flotterdod, and M. Behrisch, “The state of bicycle mod-
eling in sumo,” in SUMO Conference Proceedings,
vol. 4, 2023, pp. 55-64.

J. Tark, “Micromobility products-related deaths, in-
juries, and hazard patterns: 2017-2022,” United States
Consumer Product Safety Commission, 2023.

A. Ali, A. Gatiba, A. Davis, et al., “Complete streets
modeling capabilities and gaps,” United States. De-
partment of Transportation. Intelligent Transporta-
tion ..., Tech. Rep., 2024.

D. Botero and C. Combe, “Lost in transmission: Com-
municating for safe automated vehicle interactions in
cities,” 2024.

J. Haasnoot, R. Happee, V. van der Wijk, and A. L.
Schwab, “Validation of a novel bicycle simulator
with realistic lateral and roll motion,” Vehicle system
dynamics, vol. 62, no. 7, pp. 1802-1826, 2024.

M. Kaiser, L. M. Otto, S. Miiller, A. Hartwecker, and
C. Schyr, “Testing urban interaction scenarios between
automated vehicles and vulnerable road users using a
vehicle-in-the-loop test bench and a motion labora-
tory,” in 16th International Symposium on Advanced
Vehicle Control, G. Mastinu, F. Braghin, F. Cheli,
M. Corno, and S. M. Savaresi, Eds., Cham: Springer
Nature Switzerland, 2024, pp. 791-797, 1SBN: 978-3-
031-70392-8.

Y. Li, S. Zhang, M. Jiang, et al., “Tactics2d: A highly
modular and extensible simulator for driving decision-


https://doi.org/https://doi.org/10.1016/B978-0-08-097016-5.00003-6
https://doi.org/https://doi.org/10.1016/B978-0-08-097016-5.00003-6
https://doi.org/https://doi.org/10.1016/B978-0-08-097016-5.00003-6
https://www.sciencedirect.com/science/article/pii/B9780080970165000036
https://www.sciencedirect.com/science/article/pii/B9780080970165000036
https://www.sciencedirect.com/science/article/pii/B9780080970165000036
https://doi.org/10.1109/IVS.2017.7995816
https://doi.org/10.1109/IVS.2017.7995816
https://github.com/eleurent/highway-env
https://github.com/eleurent/highway-env
https://doi.org/https://doi.org/10.1016/j.ifacol.2019.08.085
https://doi.org/https://doi.org/10.1016/j.ifacol.2019.08.085
https://www.sciencedirect.com/science/article/pii/S2405896319304185
https://www.sciencedirect.com/science/article/pii/S2405896319304185
https://www.sciencedirect.com/science/article/pii/S2405896319304185
https://doi.org/10.1504/IJVP.2019.10018132
https://outdoorindustry.org/wp-content/uploads/2015/03/State-of-the-Outdoor-Market-August-2022.pdf
https://outdoorindustry.org/wp-content/uploads/2015/03/State-of-the-Outdoor-Market-August-2022.pdf
https://outdoorindustry.org/wp-content/uploads/2015/03/State-of-the-Outdoor-Market-August-2022.pdf
https://outdoorindustry.org/wp-content/uploads/2015/03/State-of-the-Outdoor-Market-August-2022.pdf
https://doi.org/10.1109/ITSC57777.2023.10422084
https://doi.org/10.1109/ITSC57777.2023.10422084

[25]

[26]

[27]

(28]

[29]

making,” IEEE Transactions on Intelligent Vehicles,
2024.

National Association of City Transportation Offi-
cials, “Shared micromobility report: 2023,” NACTO,
Tech. Rep., 2024. [Online]. Available: https :
/ / nacto . org / publication / shared -
micromobility—-report—-2023/.

P. G. Tzouras, L. Mitropoulos, C. Karolemeas, E.
Stravropoulou, E. I. Vlahogianni, and K. Kepapt-
soglou, “Agent-based simulation model of micro-
mobility trips in heterogeneous and perceived unsafe
road environments,” Journal of Cycling and Micromo-
bility Research, vol. 2, p. 100042, 2024, 1SSN: 2950-
1059. porl: https://doi.org/10.1016/7.
jcmr.2024.100042, [Online]. Available: https:
/ / www . sciencedirect . com / science /
article/p11/S52950105924000330.

U.S. International Trade Commission, “Low speed
personal transportation vehicles from china,” U.S.
International Trade Commission, Washington, DC,
USITC Publication 5533, Aug. 2024. [Online].
Available: https : / / www . usitc . gov /
publications/701_731/pub5533.pdf.
MathWorks, Inc., Bicycle kinematic model (matlab
documentation), 2025.

National Highway Traffic Safety Administration,
“Traffic safety facts 2023 data: Bicyclists and other
cyclists,” English, National Highway Traffic Safety
Administration, 1200 New Jersey Avenue, SE, Wash-
ington, DC, United States, 20590, Tech. Rep. DOT HS
813 739, Jul. 2025. [Online]. Available: https://
crashstats.nhtsa.dot.gov/Api/Public/
ViewPublication/813739.


https://nacto.org/publication/shared-micromobility-report-2023/
https://nacto.org/publication/shared-micromobility-report-2023/
https://nacto.org/publication/shared-micromobility-report-2023/
https://doi.org/https://doi.org/10.1016/j.jcmr.2024.100042
https://doi.org/https://doi.org/10.1016/j.jcmr.2024.100042
https://www.sciencedirect.com/science/article/pii/S2950105924000330
https://www.sciencedirect.com/science/article/pii/S2950105924000330
https://www.sciencedirect.com/science/article/pii/S2950105924000330
https://www.usitc.gov/publications/701_731/pub5533.pdf
https://www.usitc.gov/publications/701_731/pub5533.pdf
https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/813739
https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/813739
https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/813739

	INTRODUCTION
	RELATED WORKS
	PRELIMINARIES
	Tire Brush Model

	METHODOLOGY
	Vehicle Integration
	Load Transfer
	Lean
	Skateboard Truck Geometry
	Generalization to Diverse Vehicle Platforms
	Interactive Simulation Framework

	EXPERIMENTS
	Datasets
	Vehicle Instantiation
	Metrics
	Results

	CONCLUSION

